51 research outputs found

    Gene-expression of metastasized versus non-metastasized primary head and neck squamous cell carcinomas: A pathway-based analysis

    Get PDF
    Background: Regional lymph node metastasis is an important prognostic factor in head and neck squamous cell carcinoma (HNSCC) and plays a decisive role in the choice of treatment. Here, we present an independent gene expression validation study of metastasized versus non-metastasized HNSCC. Methods: We used a dataset recently published by Roepman et al. as reference dataset and an independent gene expression dataset of 11 metastasized and 11 non-metastasized HNSCC tumors as validation dataset. Reference and validation studies were performed on different microarray platforms with different probe sets and probe content. In addition to a supervised gene-based analysis, a supervised pathway-based analysis was performed, evaluating differences in gene expression for predefined tumorigenesis- and metastasis related gene sets. Results: The gene-based analysis showed 26 significant differentially expressed genes in the reference dataset, 21 of which were present on the microarray platform used in the validation study. 7 of these genes appeared to be significantly expressed in the validation dataset, but failed to pass the correction for multiple testing. The pathway-based analysis revealed 23 significant differentially expressed gene sets, 7 of which were statistically validated. These gene sets are involved in extracellular matrix remodeling (MMPs, MMP regulating pathways and the uPA system), hypoxia and angiogenesis (HIF1α regulated angiogenic factors and HIF1α regulated invasion). Conclusion: Pathways that are differentially expressed between metastasized and non-metastasized HNSCC are involved in the processes of extracellular matrix remodeling, hypoxia and angiogenesis. A supervised pathway-based analysis enhances the understanding of the biological context of the results, the comparability of results across different microarray studies, and reduces multiple testing problems by focusing on a limited number of pathways of interest instead of analyzing the large number of probes available on the microarray

    Sdhd and Sdhd/H19 Knockout Mice Do Not Develop Paraganglioma or Pheochromocytoma

    Get PDF
    BACKGROUND: Mitochondrial succinate dehydrogenase (SDH) is a component of both the tricarboxylic acid cycle and the electron transport chain. Mutations of SDHD, the first protein of intermediary metabolism shown to be involved in tumorigenesis, lead to the human tumors paraganglioma (PGL) and pheochromocytoma (PC). SDHD is remarkable in showing an 'imprinted' tumor suppressor phenotype. Mutations of SDHD show a very high penetrance in man and we postulated that knockout of Sdhd would lead to the development of PGL/PC, probably in aged mice. METHODOLOGY/PRINCIPAL FINDINGS: We generated a conventional knockout of Sdhd in the mouse, removing the entire third exon. We also crossed this mouse with a knockout of H19, a postulated imprinted modifier gene of Sdhd tumorigenesis, to evaluate if loss of these genes together would lead to the initiation or enhancement of tumor development. Homozygous knockout of Sdhd results in embryonic lethality. No paraganglioma or other tumor development was seen in Sdhd KO mice followed for their entire lifespan, in sharp contrast to the highly penetrant phenotype in humans. Heterozygous Sdhd KO mice did not show hyperplasia of paraganglioma-related tissues such as the carotid body or of the adrenal medulla, or any genotype-related pathology, with similar body and organ weights to wildtype mice. A cohort of Sdhd/H19 KO mice developed several cases of profound cardiac hypertrophy, but showed no evidence of PGL/PC. CONCLUSIONS: Knockout of Sdhd in the mouse does not result in a disease phenotype. H19 may not be an initiator of PGL/PC tumorigenesis

    A family history of breast cancer will not predict female early onset breast cancer in a population-based setting

    Get PDF
    ABSTRACT: BACKGROUND: An increased risk of breast cancer for relatives of breast cancer patients has been demonstrated in many studies, and having a relative diagnosed with breast cancer at an early age is an indication for breast cancer screening. This indication has been derived from estimates based on data from cancer-prone families or from BRCA1/2 mutation families, and might be biased because BRCA1/2 mutations explain only a small proportion of the familial clustering of breast cancer. The aim of the current study was to determine the predictive value of a family history of cancer with regard to early onset of female breast cancer in a population based setting. METHODS: An unselected sample of 1,987 women with and without breast cancer was studied with regard to the age of diagnosis of breast cancer. RESULTS: The risk of early-onset breast cancer was increased when there were: (1) at least 2 cases of female breast cancer in first-degree relatives (yes/no; HR at age 30: 3.09; 95% CI: 128-7.44), (2) at least 2 cases of female breast cancer in first or second-degree relatives under the age of 50 (yes/no; HR at age 30: 3.36; 95% CI: 1.12-10.08), (3) at least 1 case of female breast cancer under the age of 40 in a first- or second-degree relative (yes/no; HR at age 30: 2.06; 95% CI: 0.83-5.12) and (4) any case of bilateral breast cancer (yes/no; HR at age 30: 3.47; 95%: 1.33-9.05). The positive predictive value of having 2 or more of these characteristics was 13% for breast cancer before the age of 70, 11% for breast cancer before the age of 50, and 1% for breast cancer before the age of 30. CONCLUSION: Applying family history related criteria in an unselected population could result in the screening of many women who will not develop breast cancer at an early age

    Multifactorial Analysis of Differences Between Sporadic Breast Cancers and Cancers Involving BRCA1 and BRCA2 Mutations

    Get PDF
    Background: We have previously demonstrated that breast cancers associated with inherited BRCA1 and BRCA2 gene mutations differ from each other in their histopathologic appearances and that each of these types differs from breast cancers in patients unselected for family history (i.e., sporadic cancers). We have now conducted a more detailed examination of cytologic and architectural features of these tumors. Methods: Specimens of tumor tissue (5-µm-thick sections) were examined independently by two pathologists, who were unaware of the case or control subject status, for the presence of cell mitosis, lymphocytic infiltration, continuous pushing margins, and solid sheets of cancer cells; cell nuclei, cell nucleoli, cell necrosis, and cell borders were also evaluated. The resulting data were combined with previously available information on tumor type and tumor grade and further evaluated by multifactorial analysis. All statistical tests are two-sided. Results: Cancers associated with BRCA1 mutations exhibited higher mitotic counts (P = .001), a greater proportion of the tumor with a continuous pushing margin (P<.0001), and more lymphocytic infiltration (P = .002) than sporadic (i.e., control) cancers. Cancers associated with BRCA2 mutations exhibited a higher score for tubule formation (fewer tubules) (P = .0002), a higher proportion of the tumor perimeter with a continuous pushing margin (P<.0001), and a lower mitotic count (P = .003) than control cancers. Conclusions: Our study has identified key features of the histologic phenotypes of breast cancers in carriers of mutant BRCA1 and BRCA2 genes. This information may improve the classification of breast cancers in individuals with a family history of the disease and may ultimately aid in the clinical management of patients. [J Natl Cancer Inst 1998;90:1138-45

    ATBF1 and NQO1 as candidate targets for allelic loss at chromosome arm 16q in breast cancer: Absence of somatic ATBF1 mutations and no role for the C609T NQO1 polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Loss of heterozygosity (LOH) at chromosome arm 16q is frequently observed in human breast cancer, suggesting that one or more target tumor suppressor genes (TSGs) are located there. However, detailed mapping of the smallest region of LOH has not yet resulted in the identification of a TSG at 16q. Therefore, the present study attempted to identify TSGs using an approach based on mRNA expression.</p> <p>Methods</p> <p>A cDNA microarray for the 16q region was constructed and analyzed using RNA samples from 39 breast tumors with known LOH status at 16q.</p> <p>Results</p> <p>Five genes were identified to show lower expression in tumors with LOH at 16q compared to tumors without LOH. The genes for NAD(P)H dehydrogenase quinone (<it>NQO1</it>) and AT-binding transcription factor 1 (<it>ATBF1</it>) were further investigated given their functions as potential TSGs. <it>NQO1 </it>has been implicated in carcinogenesis due to its role in quinone detoxification and in stabilization of p53. One inactive polymorphic variant of <it>NQO1 </it>encodes a product showing reduced enzymatic activity. However, we did not find preferential targeting of the active <it>NQO1 </it>allele in tumors with LOH at 16q. Immunohistochemical analysis of 354 invasive breast tumors revealed that NQO1 protein expression in a subset of breast tumors is higher than in normal epithelium, which contradicts its proposed role as a tumor suppressor gene.</p> <p><it>ATBF1 </it>has been suggested as a target for LOH at 16q in prostate cancer. We analyzed the entire coding sequence in 48 breast tumors, but did not identify somatic sequence changes. We did find several in-frame insertions and deletions, two variants of which were reported to be somatic pathogenic mutations in prostate cancer. Here, we show that these variants are also present in the germline in 2.5% of 550 breast cancer patients and 2.9% of 175 healthy controls. This indicates that the frequency of these variants is not increased in breast cancer patients. Moreover, there is no preferential LOH of the wildtype allele in breast tumors.</p> <p>Conclusion</p> <p>Two likely candidate TSGs at 16q in breast cancer, <it>NQO1 </it>and <it>ATBF1</it>, were identified here as showing reduced expression in tumors with 16q LOH, but further analysis indicated that they are not target genes of LOH. Furthermore, our results call into question the validity of the previously reported pathogenic variants of the <it>ATBF1 </it>gene.</p

    Similar gene expression profiles of sporadic, PGL2-, and SDHD-linked paragangliomas suggest a common pathway to tumorigenesis

    Get PDF
    Contains fulltext : 81540.pdf (publisher's version ) (Open Access)BACKGROUND: Paragangliomas of the head and neck are highly vascular and usually clinically benign tumors arising in the paraganglia of the autonomic nervous system. A significant number of cases (10-50%) are proven to be familial. Multiple genes encoding subunits of the mitochondrial succinate-dehydrogenase (SDH) complex are associated with hereditary paraganglioma: SDHB, SDHC and SDHD. Furthermore, a hereditary paraganglioma family has been identified with linkage to the PGL2 locus on 11q13. No SDH genes are known to be located in the 11q13 region, and the exact gene defect has not yet been identified in this family. METHODS: We have performed a RNA expression microarray study in sporadic, SDHD- and PGL2-linked head and neck paragangliomas in order to identify potential differences in gene expression leading to tumorigenesis in these genetically defined paraganglioma subgroups. We have focused our analysis on pathways and functional gene-groups that are known to be associated with SDH function and paraganglioma tumorigenesis, i.e. metabolism, hypoxia, and angiogenesis related pathways. We also evaluated gene clusters of interest on chromosome 11 (i.e. the PGL2 locus on 11q13 and the imprinted region 11p15). RESULTS: We found remarkable similarity in overall gene expression profiles of SDHD -linked, PGL2-linked and sporadic paraganglioma. The supervised analysis on pathways implicated in PGL tumor formation also did not reveal significant differences in gene expression between these paraganglioma subgroups. Moreover, we were not able to detect differences in gene-expression of chromosome 11 regions of interest (i.e. 11q23, 11q13, 11p15). CONCLUSION: The similarity in gene-expression profiles suggests that PGL2, like SDHD, is involved in the functionality of the SDH complex, and that tumor formation in these subgroups involves the same pathways as in SDH linked paragangliomas. We were not able to clarify the exact identity of PGL2 on 11q13. The lack of differential gene-expression of chromosome 11 genes might indicate that chromosome 11 loss, as demonstrated in SDHD-linked paragangliomas, is an important feature in the formation of paragangliomas regardless of their genetic background.1 p

    High-resolution analysis of HLA class I alterations in colorectal cancer

    Get PDF
    BACKGROUND: Previous studies indicate that alterations in Human Leukocyte Antigen (HLA) class I expression are frequent in colorectal tumors. This would suggest serious limitations for immunotherapy-based strategies involving T-cell recognition. Distinct patterns of HLA surface expression might conceal different immune escape mechanisms employed by the tumors and are worth further study. METHOD: We applied four-color multiparameter flow cytometry (FCM), using a large panel of alloantigen-specific anti-HLA-A and -B monoclonal antibodies, to study membranous expression of individual HLA alleles in freshly isolated colorectal cancer cell suspensions from 21 patients. RESULTS: Alterations in HLA class I phenotype were observed in 8 (38%) of the 21 tumors and comprised loss of a single A or B alleles in 4 cases, and loss of all four A and B alleles in the other 4 cases. Seven of these 8 tumors were located on the right side of the colon, and those showing loss of both HLA-A and -B membranous expression were all of the MSI-H phenotype. CONCLUSION: FCM allows the discrimination of complex phenotypes related to the expression of HLA class I. The different patterns of HLA class I expression might underlie different tumor behavior and influence the success rate of immunotherapy

    Tissue chimerism in human cryopreserved homograft valve explants demonstrated by in situ hybridization

    No full text
    Background. The presence of viable cells may contribute to increased homograft valve durability. These cells may be of infiltrating recipient or persisting donor origin. In this study, in situ hybridization was used to assess the origin of cells in cryopreserved homograft valve explants. Methods. A total of 10 homografts with a donor-recipient gender mismatch were acquired from patients whose graft had been explanted at reoperation or at autopsy. The period of implantation varied from 14 days to 70 months. Frozen sections were made and alternately examined with hematoxylin and eosin staining and in situ hybridization. Male cells were distinguished from female using a biotinylated Y-chromosome-specific deoxyribonucleic acid probe. Results. No endothelial cells were found. Thirty percent of the leaflets showed large acellular zones and 30% were completely acellular. The homograft arterial wall was occupied by a vast majority of penetrating host fibroblasts in 80% of the studied specimens. Donor and recipient cells were coexistent in the wall in 60% of the studied specimens and in 50% of the leaflets. In 30% only host cells could be identified. Conclusions. This finding of tissue chimerism may lead to new insights in homograft pathology. The technique of in situ hybridization may provide an indispensable contribution in further homograft research
    • …
    corecore